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Mass transport under a progressive sea wave propagating over a rippled bed is 
investigated. Wave amplitudes a* of the same order of magnitude as that of the 
boundary layer thickness 6* and of the ripple wavelength 1" are considered. All the 
above quantities are assumed to be much smaller than the wavelength L* of the 
sea wave and much larger than the amplitude 2e* of the ripples. The analysis is 
carried out up to the second order in the wave slope a*/L* and in the parameter 
e*/6* which is a measure of ripple steepness. Because of these assumptions, the 
slow damping of wave amplitude in the direction of wave propagation is taken into 
account. Attention is focused on the bottom boundary layer where an order ( ~ * / 6 * ) ~  
correction of the steady velocity components described by Longuet-Higgins (1953) is 
found. This correction persists at the outer edge of the bottom boundary layer and 
affects the solution in the entire water column. 

1. Introduction 
The generation of steady streaming near a solid wall by an oscillating fluid is a 

well known phenomenon. Rayleigh (1883) first analysed the steady streaming induced 
by an acoustic wave in a closed duct and determined the Eulerian drift in the wall 
boundary layer. 

The extension to sea waves propagating over a flat bed of constant depth was first 
made by Longuet-Higgins (1953) and since then the problem has been tackled by many 
researchers using various analytical, perturbative and direct numerical approaches, 
see for instance Riley (1965), Carter, Liu & Mei (1973), Dore (1974), Liu & Davis 
(1977), Haddon & Riley (1983) and the recent contributions by Iskandarani & Liu 
(1991) and Wen & Liu (1994). A steady velocity component is found, of second order 
in the wave slope, which is generated inside the bottom boundary layer and persists 
at the outer edge. A weak mean velocity of second order in the wave slope is also 
induced at the outer edge of the free-surface boundary layer. Then the residual mean 
vorticities at the bottom and the free surface are diffused and advected into the entire 
water column giving rise to a complex steady drift. The existence of steady streaming, 
which is directed shoreward near the bottom, is clearly relevant to questions involving 
the movement of sediment by wave action. 

Of course the Stokes' drift is modified by the presence of bedforms. Riley (1984) 
determined the steady streaming induced by surface gravity waves propagating over 
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bedforms characterized by wavelengths of the same order of magnitude as the wave- 
lengths of the sea waves but with much larger amplitudes. Such bottom topography 
can be representative of sand waves or multiple bars (for a review on this topic see 
Mei & Liu 1993). 

In the present paper we study the steady drift induced by ripples, which are small 
bedforms characterized by a wavelength 1" which scales with the amplitude of the 
oscillations of fluid displacement close to the bottom (e.g. 1' - 10 cm). Because the 
wavelength of ripples is many orders of magnitude smaller than that of sand waves 
or multiple bars and ripple amplitude is quite small, the balances in the momentum 
equations analysed by Riley (1984) are quite different from those characteristic of 
ripples and the results described in Riley (1984) are not relevant to discuss the steady 
drift induced by ripples. 

When a rippled bed is considered, steady streaming of first order in the wave slope 
is found (Sleath 1984). Such steady streaming is confined in a bottom layer and 
consists of recirculating cells, the form, intensity and direction of which depend on 
the characteristics of the sea wave and of the bottom waviness. Many works have 
been devoted to the study of this flow because of the relevant role it plays in sediment 
transport and in the process of ripple formation. Indeed, because the sediment is 
driven by the fluid, if the steady drift in the vicinity of the bed is directed from the 
troughs towards the crests of the bottom waviness and is strong enough, the amplitude 
of the sandy bottom wave grows and ripples appear. However, since second-order 
effects in the wave slope have usually been neglected, the steady streaming turn out 
to be periodic in the direction of wave propagation and no contribution arises to the 
mass flux in the direction of wave propagation. 

To the authors' knowledge, the only paper which describes the mass flux induced 
close to a wavy bed is that by Sleath (1974). However the analysis carried out by 
Sleath (1974) considers amplitudes of the oscillations of fluid displacement much 
smaller than ripple wavelength. Hence the results obtained are not relevant for active 
ripples but only for relic ripples, as pointed out by Sleath (1984) himself. 

In the present paper the investigation of the flow over a rippled bed induced by a 
propagating sea wave is carried out up to order ( u * / L * ) ~ ,  including terms of order 
( ~ * / d * ) ~  and a*, and 1" are supposed of the same order of magnitude (a' and L" 
are the amplitude and the wavelength of the sea wave respectively while E* is a 
measure of ripple amplitude and 6* the thickness of the viscous bottom boundary 
layer). Hence two main results are obtained. At order ( ~ * / L * ) ~ ( e * / d * )  a distorsion 
of the steady recirculating cells described by Sleath (1976), Vittori (1989), Hara 
& Mei (1990) and Blondeaux (1990) is found: the cells are no longer symmetric 
with respect to ripple crests. It can be argued that this distortion induces ripple 
migration when a non-cohesive bottom is considered. The velocity of migration and 
in general the influence of O((a*/L*) ' )  terms on ripple formation and development 
will be described in a forthcoming paper (Blondeaux, Foti & Vittori (1996)). At 
order ( ~ * / L * ) ~ ( e * / d * ) ~  a velocity component independent both of time and of x* (the 
direction of wave propagation) is found. This is the major achievement of the work 
since it describes the correction induced by the presence of ripples on the Eulerian 
steady drift characteristic of the flat bottom case. 

The investigation is focused in the region close to the bottom since in the core and 
surface regions the solution can be found by means of existing approaches. 

The rest of the paper is as follows. In the next section we formulate the problem 
and describe the main assumptions. In $3 the solution procedure is presented and the 
results are discussed in $4. 
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2. Formulation of the problem 
Let us consider the propagation of a two-dimensional surface gravity wave of 

length L" and period T* over a region of constant depth h*. Let us denote by a* its 
small amplitude. If we introduce a Cartesian coordinate system with the (x*, z*)-plane 
coincident with the bottom, the x*-axis in the direction of wave propagation pointing 
offshore and the y*-axis vertical and pointing upwards, the free-surface displacement 
is described by 

y* = h* + [*(x*, t* )  = h* + [~a*(")e'(k'x'fw''*) + C.C.] (2.1) 

where k* = 2n/L* and ma = 2n/T* are the wavenumber and the angular frequency 
of the sea wave respectively. Moreover in (2.1) C.C. denotes the complex conjugate of 
a complex quantity. The x* dependence of a* is introduced because of the presence 
of viscous effects which cause the amplitude to decay during wave propagation. 

When the flat bottom case is analysed, an extensive literature is available on the 
flow induced by the wave and in particular on its steady part. Here let us consider 
a rippled bed and denote by E*V the bottom elevation. For simplicity a sinusoidal 
profile will be considered, described by 

+ C.C. (2.2) y* = E * r l ( x * )  = E*eia'x' 

The problem of flow determination is posed by continuity and Navier-Stokes 
equations along with the kinematic and dynamic boundary conditions at the free 
surface and the bottom. If we introduce the dimensionless variables 

I * * \  Y *  \ 

(where p is water density, u* and v* are the velocity components along x* and y' 
respectively, p* is pressure and a: is a measure of the wave amplitude) the following 
problem is obtained : 

au a v  
ax ay  
- + - = o ,  

au a; au a p  - +  a t  L' sinh(2nh*/L*) ('dx + '$) = -dx 

a v  a: -+  
at L' sinh(2nh*/L*) 

u = v = o for y = (e*/L*)ei"L'X + c.c., 

4 u - - v = O  a[ for y = - +  h* 4 
L* L' sinh(2nh*/L')" 

- +  
at L* sinh(2nh*/L*) dx 

2 2 h* a: n, T,, + ny Tyy + 2n,ny Txy = 0 for y = - + 
L' L* sinh(2nh*/L*) " 

where v is the kinematic viscosity of the water, n, and ny are the x- and y-components 
of the unit vector normal to the free surface and Tij are the components of the stress 
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tensor which has been scaled as pressure. Note that the effects associated with the 
surface tension have been neglected by assuming large values of the Weber number. 

The O(1) factor sinh(2nh*/l*) (hereinafter denoted by S) appearing in (2.3) has 
been introduced to simplify the analysis in the bottom boundary layer, where we 
shall focus our attention. The parameters appearing in (2.4)-(2.10) (namely a i / ( S L * ) ,  
v/(c~*(L*)~),  h*/L*, €*/I,*, a*L* ) represent the ratios of the different length scales 
involved in the problem. Indeed 2v/co* is the square of the thickness 6* of the viscous 
bottom boundary layer. 

Let us consider a small-amplitude wave propagating over intermediate depths, such 
that 

Field evidence shows that ripple wavelength 1* scales with the amplitude of fluid 
displacement close to the bottom, hence we have 

(2.12) 

Moreover let us assume that the amplitude E* of the ripples is much smaller than 
6*. This last assumption limits the applicability of the results in field situations, since 
ripple amplitude is usually larger than 6*. Indeed such large amplitudes induce flow 
separation at ripple crests and the free vortex sheets roll up generating large vortex 
structures, the dynamics of which is highly nonlinear and can be described only by 
numerical methods (Longuet-Higgins 1981 ; Blondeaux & Vittori 1991). On the other 
hand the assumption e* +6* implies that nonlinear effects are weak and the analytical 
treatment of the problem is greatly simplified. Hence our analysis is strictly relevant 
only when rolling-grain ripples are considered, since they have amplitudes so small 
that do not cause flow separation. Moreover the study of the problem assuming 
small values of E* turns out to be relevant to ripple formation and development in 
an explanation of the presence of a steady drift (Blondeaux et al. 1996). Also we feel 
that our results provide some qualitative information even on the flow induced by 
vortex ripples since all the important features of the real phenomenon (is. nonlinear 
effects related both to ripple steepness and sea wave slope) are retained. Finally, 
it is necessary to compare the size of l* with that of 6*. The assumption 1*+6* 
is of no practical importance since active ripples are characterized by values of 1* 
larger than 6:. In the present work, the flow regime in the bottom boundary layer 
is assumed to be laminar, hence values of the Reynolds number Re = a;w*G*/Sv 
up to 100 should be considered. In this range of Re the dimensionless wavenumber 
a = 2718*/1* of ripples assumes values in the range (0.1, 0.4). For the largest values 
of a, a perturbative approach based on the assumption a 4 1  is not fully justified, 
hence in the following a will be assumed a free parameter. Because, as pointed out 
previously, for active ripples 1' - a*, it is easy to see that Re also turns out to be a 
free parameter subject to the only constraint that O(Re) - O(a-'). Indeed the ratio 
a*/l* turns out to be equal to aRe/4n and is of order 1 for real ripples. Although 
in the analysis a and Re are free parameters and in principle can assume any finite 
value, some limits to their ranges come from the numerical procedure which is used 
to obtain the results. This point is discussed in $4. It is worth pointing out that the 
assumption 1* - 6* implies 6* - a* as recently assumed by Wen & Liu (1994) in a 
similar context. 

Because of the assumptions described above, the problem is characterized by the 
two independent small parameters 6 and E ,  

6 = 6*/L*61, E = € * / , 6 * 4 ,  (2.13) 

a:+L* - h". (2.11) 

1* = 2n/a* - ai/S. 
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since the other parameters appearing in (2.4)-(2.10) can be related to 6 and E :  

(2.1 4~-C)  

It is worth noticing that a:w'/S is the amplitude of the irrotational velocity oscillations 
close to the sea bed and that the Reynolds number R E  based on this length scale 
( R E  = a i w / ( S 2 v ) )  turns out to be equal to Re2/2.  

3. Solution 
At this stage it is useful to take into account that the amplitude of the sea wave 

decays on a spatial scale L*/6 due to viscous effects (Mei 1989). Hence let us introduce 
the new variable 

and assume that 
x = x6 (3.1) 

(3.2) 

where the function a(x )  can be set equal to 1 without loss of generality, if a region 
of order L* is considered. The introduction of the slow spatial scale x forces the 
derivatives in the x-direction in (2.4)-(2.10) to become d/dx + s a / a x  

Then the flow is expanded in a power series of 6 (6 is related to the wave slope 
because of (2.14~) 

(3.3) 

a* 

a:, 
a = - = a(x)  

( u , v , p , l )  = (UO, ~ 0 , P O ' l O )  + d(U1, J f 1 , h l d  + 0(J2). 

At the leading order of approximation the following solution is obtained: 

+ C.C. (3.4) 
ia a 
2 471 (Uo, Jfo,  Po, l o )  = cosh(2ny), - sinh(2ny), - cosh(2ny), 

which however does not satisfy all the boundary conditions at the bottom. The 
existence of a bottom boundary layer is thus inferred. Let us focus our attention on 
this layer where the problem can be rescaled using the viscous length scale 6* : 

2 = x/6, p = y / 6 .  (3.5) 

The algebra which is needed to find the solution can be considerably simplified by 
introducing the variable 

5 = t + 2ns2 (3.6) 
and by splitting the pressure field into a component of order 6 and a component of 
order 1 which is forced by the external irrotational flow at the bottom and does not 
depend on y" and 2 but only on f and x: 

(3.7) p ( 2 ,  9, z x) = Pe(t x) + s m ,  9, z x). 
Since 

the problem in the bottom boundary layer turns out to be 

au av au 
- + - + 2718, = O(S2), 
a2 ag at 

(3.9) 
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-- + - ~ + + other terms of 0(S2), (3.11) ag 2 an2 
- - 

u = u = o for g = EeiaP + C.C. (3.12) 
plus matching conditions between the solution of the problem (3.9)-(3.12) for 9 
tending to infinity and the solution (3.3) in the core region for y tending to zero. The 
terms of O(S2) not explicity written in (3.9)-(3.11) come from the dependence of the 
flow in the boundary layer on the slow spatial variable x. 

Since the outer solution is obtained as a power series of 6, let us expand (u,u, Pe,jj) 
in a similar way: 

(u, v ,  pe, B) = (uo, ~ 0 ,  Pea, PO) + 6(ul,v1, p e l ,  PI)  + 0 ( S 2 ) .  (3.13) 

In the following, capital letters indicate dependent variables in the core region where 
y* scales with h* and small letters are used for the corresponding quantities in the 
bottom boundary layer where lengths are scaled with 6:. 

At the leading order, the problem for (uo,uo,P,o,~o) turns out to be equal to that 
posed by (3.9)-(3.12) without the terms of order 6. Because of the presence of the 
small parameter E ,  we expand the solution as 

(uo,~o,~eo,Do) = (~oO,uoo,peo,~oo) + E(~OI,VO~,O,PO~) + ~ ~ ( ~ 0 2 , ~ 0 2 2 0 , ~ 0 2 )  + o(f3)  (3.14) 

where no contribution of O ( E )  or 0(c2)  is present in Pea. At order E O ,  because the 
outer flow for vanishing y tends to 

(u, V )  + (-kei’ + c.c.,o) + O(S) (3.15) 

and the boundary condition (3.12) for ( ~ 0 0 ,  urn) forces 

u0i-J = 2)m = 0 at g = O  (3.16) 

um turns out to be independent of 2 and voo vanishes. Moreover the continuity of the 
pressure field suggests 

1 .- 
PeO = -ell + C.C. 

4n 
(3.17) 

It turns out that 

pm E5 0. 
At order E the following problem is obtained: 

(3.20) 

(3.21) 
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(3.23) 

auoo . - 
a.F 

uo1 = -- e'"" + C.C. for j = 0, (3.24) 

VOl = 0 for j = 0, (3.25) 

(uo1,vo1) + 0 as j + co. (3.26) 
Equations (3.21)-(3.23) along with boundary conditions (3.24)-(3.26) are those solved 
by Vittori (1989) and Blondeaux (1990) and similar to those considered by Hara & 
Mei (1990). The results show the existence of recirculating cells periodic both in time 
and in the direction of wave propagation. Indeed the solution can be written in the 
form 

( U O 1 ~ ~ 0 1 ?  Pol) = (GO1 (v", ?)7 601 ( v " 7  f ) 7  PO1 (Y", f))eiM' + C.C. 

= ( 2 (u l~ ; ) ( j ) ,  u g ) ( j j ) ,  pg)( j ) )e im' cia' + c.c. (3.27) 

The existence of steady streaming can be inferred by the non-vanishing values of ug), 
u:I7 pg). The discussion of the flow patterns when different values of Re and CI are 
considered is not relevant here because no steady flow averaged in the %-direction 
is induced. The interested reader is referred to the papers mentioned above for a 
discussion of the results. 

At order e2 the solution is characterized by a component proportional to e2iarR and 
one which does not depend on 2: 

m=-m ) 

(u02, vO27 PO21 = [(fig)@, ?)7 @)(Y"7 ?) 7 &)(j, f))e2iMz + c.c.1 

+ (&Y, f), vg(y",  f), Pb0)(9,?)). (3.28) 

Only the latter turns out to be relevant to evaluate the correction of order e2 of the 
steady drift induced by ripples. After some tedious but straightforward algebra it is 
possible to obtain 

(3.29) 

where 7 indicates the complex conjugate. Since the boundary condition for v g )  at 
y"=Ois 

(3.32) 

it forces 0;) to be zero at j = 0. Indeed d6ol/dg at y" = 0 turns out to be equal to 
ix(du,/aj) at j = 0 and hence imaginary. Then equation (3.29) suggests that vg) = 0. 
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Equation (3.30) can be solved with the approach used by Vittori (1989). Finally the 
pressure field can be easily obtained by means of the numerical quadrature of (3.31). 
It is worth pointing that equations (3.30), (3.31) are subject to the following boundary 
conditions : 

(3.33) 

(UrJZ,P02) (0) (0) -+ 0 as g + 00. (3.34) 
At order 6, let us again distinguish between the core region where O(y) - 1 and 

the inner region where O(g) - 1. In the outer region the governing equations are 

aul av, au, 
ax ay ax 
-+-+- = 0, 

-+ -  uO-+vO- =---- 
apl ap, 

au’ at Re 2 ( 2 auO) a Y  a x  a x >  

(3.35) 

(3.36) 

(3.37) 

Indeed, even though the amplitude of the basic wave can be assumed equal to 1 at 
the leading order of approximation in a region of order L’, its slow variation should 
be taken into account when considering the O(6) problem. 

Because of the linear and nonlinear forcing terms appearing in (3.35)-(3.37) and 
because of the matching with the inner solution, the external solution should contain 
a steady part and a periodic part proportional both to ei(2nx+t) and ei2(2nx+t) : 

(1) (1) p(1))ei(2nx+t) + 
1, 

+ “U,, (2) 9 Vl, (2) > 4, (2) )e i2(2nx+t) + C.C.]. 

( u1, Vl, P1) = ( Uls, VlS? Pls) + [( u,, > VlP > 

(3.38) 

Only the periodic contributions are relevant to determining the structure of the steady 
flow in the bottom boundary layer. 

At this stage it is worth pointing out that ( Uls, Vl,, PI,) has two components: one 
of 0(1) which is equal to that described by Longuet-Higgins (1953) and one of order 
e2 which can be found with a similar approach. 

The solution forced by the nonlinear terms appearing in (3.36), (3.37) is found to 
be 

16 
C1 

(Ui:, Vj:), P;:)) = 2iC1 cosh(4ny), 2C1 sinh(4ny), -i- cosh(4ny) - 
n 

where 
sinh(4nh*/l*) ] -’ 

cosh(4nh8/l*) - 
2 tanh(2nh*/L8) 

(3.40) 

The part of the solution proportional to ei(2nx+t) is forced both by the terms i3Uo/i3x, 
dPO/aX appearing in (3.35), (3.36) and by the matching with the inner solution. The 
former contribution is 

1 i 
2n 

(3.41) 
while the latter contribution ( UiF),  V!i2), Pi:)) is forced by the non-vanishing value 
of u10 for y” tending to infinity. By considermg the O(6) solution (3.51) in the bottom 

( 
1 da 

2 dx 
(Uib”, V/il), P$”) = -- cosh(2ny) iy tanh(2ny), y, - [1/(2n) - y tanh(2ny)l 
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boundary layer (which will be obtained in the following) and by verifying that the 
term nig matches V, for y + 0, it can be seen that 

71 
(Uip),  V!i2), P$") = (E(1 - i) sinh(2zy), --(1 + i) cosh(2ny), -i(l - i) sinh(2ny)) a. 

(3.42) 
2 2 

While the solution (3.39) satisfies both the kinematic boundary condition at the free 
surface and that which involves the pressure field, the component (Ui:, V!;), Pj i ) )  gives 
rise to a value of dPl /dt  - V1 cosh[2nh]/(2n sinh[2nh]) at y = h which is equal to 

271 

(3.43) 

Vl 1 @ [" sinh(2zh) - 
d t  271 sinh[2nh]/ cosh[2nh] ] y=h = 471dx 

- a-  - - h  + $ ( I  +i)  
(1 + i) sinh(2nh) 1 da cosh2(2dz) cosh2(2nh)a 

4 471 dx sinh(2nh) sinh( 271h) 

and it is different from zero unless 

(3.44) 
2z2( 1 + i) - da 

dx 271h + sinh[2nh] cosh[2zh] 
- _  

It is easy to verify that the solvability condition (3.44) gives rise to the wave amplitude 
decay induced by energy dissipation in the bottom boundary layer. In fact the 
computation of the dissipation factor f e  defined by Jonsson (1963) leads to the 
well-known value 

(3.45) 

At this stage it is worth pointing out that the increase of energy dissipation caused 
by the bottom waviness would induce a further term in (3.44) of order e2. However 
this term is not explicitly considered here because it does not affect the solution up 
to the order considered in the present work. 

As for the previous order, the solution (3.38) does not satisfy the boundary 
conditions which involve the viscosity and the bottom boundary layer should be 
explicitly considered. 

Once more the presence of the small parameter E suggests expanding the functions 
(ul,vl,Pel,&) appearing in (3.13) in power series of E: 

(u1,u1,Pe1,P1) = (u10,~1O~~e~~Plo) + ~(~11,~11,0,~11)  + e2(~12,v12,0,~12) + 0(e3). (3.46) 

At the leading order, because the external forcing does not depend on the fast 
spatial variable R and the no-slip condition (3.12) is forced at 9 = 0, it can be 
assumed that (ulo, v10, Pel, plo) do not depend on 2. After some algebra it is possible 
to obtain the following problem: 

(3.47) 

(3.49) 

2410 = 010 = 0 for J = 0, (3.50) 
where appropriate matching conditions with the external flow should be forced. 
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The continuity equation gives 

ul0 = Clo(y)eif + C.C. = ni (3.51) 

while equation (3.49) allows plo to be determined: 

plo = n ($ - &) ei: + c.c. (3.52) 

The matching condition with the external flow suggests the following expression for 
P e l  : 

Pel = - - + - ;:) e 2ii + C.C. (3.53) 

which can be recast as 

(3.54) 
in Re dPe1 - 

y=o 

-2n- - 
dt 

Hence equation (3.48) can be written as 

Because of the forcing terms, ul0 can be split into a steady component and an 
oscillating one : 

u10 = [ i i lo (g)  + filo(~)e2"] + C.C. (3.56) 

By substituting (3.56) in (3.55) and solving the problems for a10 and file it is easy to 
see that 

(3.57) 
nRe 

4 
[2 + i + (1 - i ) ~ ] }  , - ulo = -- {; + ie-2J - e-(l-i)Y 

(3.58) 

Next the problem at order 66 should be solved. The algebra is tedious but straight- 
forward and the following equations are obtained : 

dull auol a v l l  
an at ag 
- + 271- + - = 0, (3.59) 

(3.61) 
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along with the boundary and matching conditions 

(3.62) 

( u l l , v l l )  +. 0 as y” + 00. (3.63) 

Equations (3.60), (3.61) along with (3.59) can be combined to provide a single equation 
for vl l ,  which turns out to be 

where 

(3.65) 

with the boundary and matching conditions derived by (3.62), (3.63) using continuity 
equation (3.59) : 

(3.66) 
anlo . I 

vll  = --elccx + C.C., 
39 

for J = 0, duo1 
- = -271- + av11 

ag at 
(3.67) 

(3.68) 

The boundary conditions (3.66) and (3.67) suggest the following form for the 
solution: 

( ~ I I , ~ I I , P I ~ )  = (ii11(972)7v^ll(Y”72),811(y”,2))eian + C.C. (3.69) 
Substituting (3.69) in (3.64), a new problem is obtained where d / a j l  is replaced by ia. 
The problem turns out to be similar to that solved by Vittori (1989). Therefore the 
same method of solution is employed here (the reader interested in a description of 
the approach is referred to the Appendix). 

Once equation (3.64) is solved, u11 can be obtained from (3.59) which gives 

(3.70) 

and 811 from (3.60). 
Finally, the problem of order 6e2 should be tackled. At this order of approximation 

the velocity field shows a component periodic in the 2-direction as well as a part 
which does not depend on 2. Let us focus our attention on the latter contribution 
and denote it with an index (‘1. For sake of brevity we skip the detail and give only 
the final equations. 
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From the continuity equation 

(3.71) 

the vertical component of the velocity can be easily obtained by a numerical quadra- 
ture, when the boundary condition 

a2vlo acll 
v(0) 12 = - [ ag2 + (ap  + c.c.)] at j7 = 0 (3.72) 

is taken into account. The momentum equation for the time average d;) of uio2) gives 

L 

(3.73) 
where an overbar denote the time average. Equation (3.73) is subject to the condition 

(3.74) 

moreover the matching with the external flow requires $2 to be finite for j7 tending 
to infinity. The particular solution $iP of (3.73) can be determined with a numerical 
quadrature. The homogeneous solution di\ turns out to be 

(3.75) 4 0 )  - 
~ 1 2 h  - aj7 + b. 

The constant a should vanish because of the matching with the outer solution while 
the value of b is obtained by forcing (3.74). The spatial distribution of 2;; along 
with the value of b are the relevant results of the present analysis since they provide 
the structure of the steady drift induced by a rippled bed in the boundary layer, its 
asymptotic behaviour for j7 +. co and the amount of vorticity which diffuses and is 
advected in the entire water column. 

At this stage it is useful to stress that the flow in the bottom boundary layer exactly 
matches that in the core region. Indeed for j j  tending to infinity uoo matches Uo while 
u01,v01, 2402, v02 tend to zero. Moreover 1,110 has a term proportional to y' which matches 
Vo and a constant part which matches V!i2). The component ;lo for large y" fits Uii) 
while u l l ,v l l  tend to vanish. Finally, u;) and u\:) for j j  tending to infinity give rise to 
time-periodic functions of order 6e2 which force time-periodic components of order 
e2 in U1, and V1,. In particular the time average of u;) for large values of j7 gives 
rise to an O(e2) correction to the boundary condition for the steady mass flux (vl,) 
provided by the limit of Ulo for j7 tending to infinity. 

4. The results 
From the analysis previously described, the flow in the boundary layer at the 

bottom of a sea wave when ripples cover the bottom surface can be seen as the sum 
of different contributions. There is a part of O( 1) (urn) which is periodic in time, slowly 
varying in the direction of wave propagation and with a vertical structure described 
by the well-known Stokes' solution. The bottom waviness induces a perturbation 
to the flow of O(E)  [(uO1,vol)], the main characteristic of which is the presence of 
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112 I 112 I = PIS* 
X x" 

FIGURE 2. Steady part of [(Li01,6001) + 6(i&1,611)]ei" + C.C. for tl = 0.875, Re = 1. 
(a)  6 = 0, (b)  6 = 0.05. 

- 

steady recirculting cells periodic in the x-direction and symmetric with respect to the 
ripple crests (see figures l a  and 2a). The number, form and intensity of these cells 
depend on the wavenumber a of the waviness and the flow Reynolds number Re. 
The reader interested in a discussion of the behaviour of u01,vo1 as a and Re are 
varied is referred to Vittori (1989). However no steady mass flux is induced in the 
%-direction. The steady drift also vanishes at order c2. Indeed 1402 and 2102 have a 
component periodic in the %-direction and a component which does not depend on 
2. However the latter has a vanishing time-average because of the symmetry of the 
problem along the x-direction at this order of approximation. At order 6, the mean 
dynamic pressure field and the effect of the time averaged convective terms give rise 
to a mean streaming current Ul0 which was first obtained by Longuet-Higgins (1953). 
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112 I 112 1 = 1*/6* 
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FIGURE 3. Steady part of [(zZol,u^ol) + 6(zZll,u^ll)]ei" + C.C. for CI = 0.5. (a) Re=50, 6 = 0.001, 
( b )  Re=90, 6 = 0.0002. 

- 

Moreover oscillating contributions are present [ ( i i l O ,  f i lO)] .  At order 6e the interaction 
of the flow described by Vittori (1989), which is periodic both in space and in time, 
with the Stokes' flow and that obtained by Longuet-Higgins (1953) forces velocity 
components [(u11, vl l ) ]  which are periodic in the 2-direction. Therefore at this order 
no steady mass flux is induced. However u l l  and vl l  are no longer symmetric with 
respect to the ripple crests and produce a distortion of the form of the recirculating 
cells appearing at order c. Finally, a steady streaming uniform in the x-direction 
is induced by the bottom waviness at order 6c2. Such steady drift is forced by: (i) 
the interaction of the mean streaming current of order 6 with the component of the 
flow at order e2 which is independent of 2 (last term of (3.73)); (ii) the interaction 
of the spatial periodic components of order E and 6e (first and second terms on the 
right-hand side of (3.73)); (iii) the interaction of the time-periodic Stokes' flow with 
the vertical component of the flow at order 6e2, which turns out to be time-dependent 
too (third term appearing on the right-hand side of (3.73)).  

In the description of the results, we will focus our attention on the flows at order 
€6 and c26 which are the novelty of the present work. 

In figures 1 and 2, the steady part of [(&1,&1) + 6(fiI1,611)]eixx + C.C. is plotted for 
fixed values of a and Re (namely a = 0.125, Re = 1 and a = 0.875, Re = 1 respectively) 
both for 6 = 0 (figures la  and 2a) and for non-vanishing values of 6 (6 = 0.001 in 
figure l b  and 6 = 0.05 in figure 2b) to show the effect of the Stokes' drift on the 
recirculating cells described by Vittori (1989) who neglected O(6) effects. According to 
figure 8 of Vittori's (1989) paper, when 6 = 0 there are four steady recirculating cells 
for a = 0.125 while for a = 0.875 only two cells appear. In both cases the presence 
of the Stokes drift causes a shift of the centres of the cells which is in the offshore 
direction (we remind the reader that the x-axis points offshore). Moreover a distorsion 
of the steady streaming is also induced. As pointed out in $2, results for values of 
Re falling in the range characteristic of the laminar regime can be obtained (Re up 
to 100). For example figure 3 shows [ ( G ~ l , v ^ ~ ~ )  + 6(i&1,611)]ei" + c.c for a = 0.5 and 
values of Re equal to 50 and 90. Also for these high values of Re, the spatial periodic 
steady streaming is no longer symmetric with respect to the crests and the troughs 
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FIGURE 4. Plot of the velocity component iig) versus jj  for (a) a = 0.3, Re = 12, 
(b)  CI = 0.4, Re = 6, ( c )  a = 1, Re = 10. 

of the ripples and is also distorted. As it will be described in a forthcoming paper 
(Blondeaux et al. 1996) this distorsion is quite important in understanding sediment 
transport in the direction of wave propagation, since it induces the migration of 
the bottom waviness (i.e. ripple migration) when the non-cohesive bottom case is 
considered. 

Figure 4 shows some typical examples of the vertical structure of the steady 
uniform flow iig) which is induced at order 6e2. There are values of a,Re  such 
that the correction of the steady drift is always negative and values of a, R e  such 
that it turns out to be always positive. In other words, ripple presence increases 
mass transport towards the shore in the former case and reduces it in the latter 
case. Moreover values of a, R e  exist for which U g ) ( y )  is characterized by a twisted 
behaviour, such that the mass transport is negative close to the bed, positive moving 
far from it and eventually becomes negative again as j j  tends to infinity. However 
these are uncommon cases and ripple influence on mass transport can be discussed 
by looking at the asymptotic value UM of $2 for large j j .  The values of UM are of 
importance for the determination of the steady flow in the core region where y" is of 
order h'. Indeed the limit of iig) for j j  tending to infinity is just the boundary condition 
for Vls at y equal to zero and thus is fundamental to obtaining the mass transport in 
the entire water column. An order of magnitude analysis on the equations of motion 
shows that in the present case, even though a: is assumed to be of the same order of 
magnitude as 6*, the solution in the core region can be obtained by the creeping flow 
approximation. Since this case is quite simple to analyse, no further attention will be 
paid to it. 

For small values of Re, UM turns out to be always negative in the range of 
a investigated here (see figure 5). The waviness of the bed thus increases mass 
transport towards the shore. When R e  is increased, it is hard to single out an overall 
tendency, as shown in figure 6. Indeed for a = 1, ELM is always negative and its 
absolute value increases as R e  is increased, at least in the range of R e  investigated 
here. However when smaller values of a are considered an increasingly oscillatory 
behaviour appears. For example when a is equal to 0.3 and small values of R e  
are considered UM is negative. Then increasing Re, UM becomes positive but further 
increases of R e  lead to negative values again. Moreover the behaviour of the function 



262 G. Vittori and P. Blondeaux 

a 

Ol----- 

FIGURE 5. Asymptotic values i i ~  of $) for large values of y” plotted versus tc for Re = 1 
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FIGURE 6. Asymptotic values UM of $2 for large values of y” plotted versus Re 
and different values of a. 

ZM(Re) for larger a seems to indicate that for CI = 0.3 increasing Re, positive values of 
uM could be found again and so on. Because of the difficulties in finding a sufficiently 
accurate solution for large Re and small a, the curves appearing in figure 6 have been 
interrupted. Indeed the numerical quadrature of (3.73) leads to values of i$i which 
are much smaller than the right-hand side of (3.73). It follows that the numerical 
accuracy which is required in the evaluation of F ( y )  should be quite high. When Re 
is larger than a critical value which depends on a, it turns out that it is not possible 

- 
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to find an accurate estimate of iig) and hence of EM even using double precision in 
the computer codes. In these cases an asymptotic solution for large values of Re and 
c( - O(Re-') could be of some help. Figure 6 gives an idea of the above critical values 
of Re. 

When a non-cohesive bed is considered, the changeability of the sea bottom 
introduces further degrees of freedom and makes it difficult to state the influence of 
mass transport on the process of ripple formation and development. Such influence 
can be determined by introducing O(6) effects in the analyses by Blondeaux (1990) 
and Vittori & Blondeaux (1990). This work has been accomplished in a companion 
paper (Blondeaux et al. (1996)) to be submitted for publication. 

This work has been carried out as part of the MAST G8M (Coastal Morphody- 
namics) research program and has been funded jointly by the Commission of the 
European Communities, Directorate General for Science Research and Development 
under MAST Contract No MAS2-CT92-0027 and by the "Minister0 dell'universita 
e della Ricerca Scientifica e Tecnologica". 

Appendix 
To solve equation (3.64) along with boundary conditions (3.66)-(3.68) a new coor- 

dinate system ( X ,  Y )  which oscillates with the fluid far from the bottom is introduced: 

X = X + 7 l i (e i '  + c.c.)df, 

Y = j  
and a modified velocity field of order one is defined: 

Finally a new unknown is introduced: 

"yll = v^llP(Q 

where 

P ( t )  = exp [ -iiaRe L ( e "  + c.c.)df] . 

(A 4) 

By taking into account that both iiol and 601 can be expressed in a fashion similar to 
(A4), 

and by expanding both Vl1 and P(t) in Fourier series, 
(%Ol, "yo,) = (GOl,v^Ol)P(f), (A 6) 

m m 

P ( 0  = xpmei" ' ,  $11 = G,(Y)eimi, 
m=m m=-m 

a system of coupled ordinary differential equations for G, is obtained from (3.64): 

L 

d2 F, + (FO)+G,+i - ?G,-i dY - (gy G,,,+l] = H, (A8) 
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with the following boundary conditions : 
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In (AS) the operator N 2  is defined as follows: 

and Hm( Y )  are the coefficients of the Fourier expansion of the forcing term appearing 
in (3.64) in the new reference frame. Moreover the function FO is defined as 

(A 12) 
1 - ( l+ i jY .  Fo(Y) = ?e 

Neglecting harmonics higher than the Mth in the Fourier series (A7), the functions 
G, are determined numerically using a Runge-Kutta method of fourth order and a 
shooting procedure from some large value Y,,,,, of Y .  More details can be found in 
Vittori & Blondeaux (1990). 
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